
Numerical Simulations for Active Tectonic Processes:
Increasing Interoperability and Performance

July 25, 2003 JPL Task Order 10650 Page 1 of 9

Portal Software Test Plan

1. Scope

The project, “Numerical Simulations for Active Tectonic Processes: Increasing
Interoperability and Performance” has the following primary aims:

• To develop and improve the performance of applications for the
simulation of earthquakes and fault systems.

• To develop and deploy federated databases for storing and retrieving
both real and simulated data.

• To develop a Web Services-based interoperability structure that can be
used to access applications and bind them to data sources and user
interface components.

• To develop an extensible portal system that can be used to aggregate
and manage user interfaces to applications, data, and miscellaneous
services.

Detailed descriptions and documentation of the project may be found at
http://www-aig.jpl.nasa.gov/public/dus/quakesim/milestones.html.

This document covers the software test plan for code developed as part of
Project Milestone I, “Interoperability”. The foci of this milestone are the third
and forth bullets above.

1.1 System Overview

The SERVOGrid framework provides the interoperability that binds the
QuakeSim project’s codes and data sources. SERVOGrid consists of
collection of Web services for common tasks that we bind into Application
Metadata Web Services. The user interfaces for accessing these services
are delivered through a browser-based Web Portal. Component interfaces
are managed as “portlets” within a portal container framework. Project details
may be found at http://www-
aig.jpl.nasa.gov/public/dus/quakesim/milestones.html and
http://www.servogrid.org.

2. Referenced Documents

The following are supplemental documents that are needed to understand the
test plan described herein:

Portal Software Test Plan

July 25, 2003 JPL Task Order 10650 Page 2 of 9

• Software Development Plan: http://www-
aig.jpl.nasa.gov/public/dus/quakesim/quakesim_sw_plan20020730.pdf.

• Requirements Document: http://www-
aig.jpl.nasa.gov/public/dus/quakesim/CT_Requirements.doc.

• Software Design Document: http://www-
aig.jpl.nasa.gov/public/dus/quakesim/DesignDocument2.1.doc.

• Portal Example User Manual: http://www-
aig.jpl.nasa.gov/public/dus/quakesim/PortalExample.doc.

3. Software Test Environment

Software Version: The system describes QuakeSim portal software v
0.31416.

Languages/Compilers: All software described is written in Java. All
machines use the Java 2 Software Development Kit version 1.4 for compiling
and running software.

Third Party Software: All Web software is run by Tomcat 4.0/4.1 Web
servers (http://jakarta.apache.org/tomcat/). All Web Services use Apache Axis
version 1.0 (http://ws.apache.org/axis/). The portal system base is built with
Jakarta Jetspeed 1.4b (http://jakarta.apache.org/jetspeed/site/index.html).
We use Apache Ant (http://ant.apache.org/) for both source compilation and
for runtime execution management. These software packages are in turn
built on several other projects; a complete list is available from the provided
URLs. All third party software is freely available at no cost and open source.

Input Data Sets: The test portal uses GeoFEST, Disloc, and Simplex as test
applications. GeoFEST input data is generated in the portal from fault and
layer data in the Fault Database. Sample Simplex and Disloc input data files
were provided by developers.

Participating Organizations and Personnel: Choonhan Youn (IU) and
Marlon Pierce (IU) developed the Web service and portal software. Jay
Parker (JPL) provided information and technical support for using GeoFEST
and supporting codes into the portal. Peggy Li (JPL) provided information
and support for using RIVA and RIVA driver scripts that were used for
visualization. Anne Chen (USC) developed a Web service for accessing the
fault database and provided client SQL query guidelines. Parker, Li, Theresa
Baker (MIT/JPL) and Gerry Simila (Cal State Northridge) served as test
users.

Testbed Architecture and Hardware: The portal system test environment
consists of the following host machines:

Portal Software Test Plan

July 25, 2003 JPL Task Order 10650 Page 3 of 9

1. complexity.ucs.indiana.edu: an 8 processor Sun Sunfire server.
Complexity hosts the Web portal, identified as “User Interface Server”
in Figure 1.

2. grids.ucs.indiana.edu: a duel processor Sun Ultra 60 server. Provides
computational power for running science applications.

3. solar.uits.indiana.edu: a Sun E10000 high performance computer. See
http://www.indiana.edu/~rats/research/solar/solar.shtml for more
information. Solar provides high performance computational power for
parallel applications. Solar is maintained by Indiana University’s
Information Technology Services.

4. {noahsark, danube}.ucs.indiana.edu: duel processor Linux servers.
These machines are used to provide computational power for running
science applications.

5. jabba.jpl.nasa.gov: An 8 processor SGI maintained by Jet Propulsion
Laboratory with specialized visualization software (RIVA).

6. infogroup.usc.edu: A Linux server maintained by USC that hosts the
Fault database.

Unless otherwise specified, the testbed servers are owned and maintained by
the Community Grids Lab.

The general architecture is depicted in the Figure 1:

User Interface Server

DB Service 1

JDBC

DB

Job Sub/Mon
And File
Services

Operating and
Queuing
Systems

Portlet Based
User Interface

Visualization
Service

RIVA

Host 1 Host 2 Host 3

HTTP

SOAP SOAP

SOAP SOAP

Client Stubs

 Figure 1 QuakeSim portal architecture.

The DB service is located on infogroup.usc.edu. The visualization service
runs on jabba.jpl.nasa.gov. The User Interface Server is hosted on

Portal Software Test Plan

July 25, 2003 JPL Task Order 10650 Page 4 of 9

complexity. All other listed hosts provide Job Submit/Monitor services. In
the portal walkthrough described in the User Manual, danube acts as the
compute host.

Configuring the System: The User Interface (UI) server and all backend
service hosts shown in Figure 1 run Tomcat Web servers. The service hosts
run Apache Axis as a web application in Tomcat. The UI server runs Apache
Axis and Jetspeed as web applications. These may be configured in the
standard ways, as described in the URLs above.

All system Web services that we developed may be deployed using standard
methods described in the Apache Axis documentation. Clients stubs for
these services may also by generated using the documentation described
therein. Jetspeed portal extensions may be compiled and deployed using
Apache Ant build scripts. User interface components are developed using
JavaServer Pages and are deployed as a separate web application in the UI
server.

4. Test Identification

4.1 General Information

Portal component testing is used to ensure each of the individual
components of the system (i.e., database access or application execution)
operates correctly.
Portal system tests are grouped into the following general categories:

• Positive User Testing: The portal, when used correctly in the manner
prescribed in the user manual, must generate the correct final results
for the selected application (GeoFEST for the tests).

• Negative User Testing: The portal should be tested for invalid user
inputs and actions.

• System Testing: The portal should be tested for cases when partial
system failures occur; i.e. one of the hosts or Web services is
temporarily unavailable.

4.1.1 Test Level
This document describes both Developer and System Integration testing.

4.1.2 Test Classes
We will perform operational tests to verify component services execute as
specified in design documents. We will also perform tests for invalid user
inputs.

4.2 Planned Tests
This section describes the specific tests to be performed under this plan

Portal Software Test Plan

July 25, 2003 JPL Task Order 10650 Page 5 of 9

4.2.1 File Transfer Web Service Unit Testing
• Purpose of the test: Verify that the file transfer web service functions

(upload, download, crossload) work correctly on text and binary files,
and also correctly transfers large files.

• Test Type/Class – Function/operation
• Test inputs – Test file transfer with sample Disloc input files, files in

binary formats (PDF, MS Word), large files (GeoFEST output, over 68
MB).

• Verification method(s) – Files should be transferred without corruption.
• Special Requirements – None.
• Assumptions/Constraints—File transfer will not be interrupted by

network problems.
• Expected results – Sample files transfer correctly.
• Actual results (added during the testing phase) – All files tested were

transferred correctly.

4.2.2 Job Execution Web Service Unit Testing
• Purpose of the test: Verify that the job execution web service functions

work correctly on selected QuakeSim applications (GeoFEST,
Simplex, Disloc).

• Test Type/Class – Function/operation
• Test inputs – Sample input files for Disloc, Simplex, and GeoFEST,

provided by application developers.
• Verification method(s) – Applications launched through the portal

should produce the same output as if launched from the command line.
For GeoFEST, output data should be compared to verification data.

• Special Requirements – None.
• Assumptions/Constraints—Applications must run non-interactively.
• Expected results – Output data from applications launched through the

portal matches expected output data.
• Actual results (added during the testing phase) – All codes produced

expected outputs.

4.2.3 Context Data Management Web Service Unit Testing
• Purpose of the test: Verify that the context data management services

can be used to correctly store and retrieve arbitrary name/value pairs,
and can organize these pairs in arbitrarily deep trees.

• Test Type/Class – Function/operation
• Test inputs – Application input data, fault data, and layer data all

collected through HTML forms shall be stored and recovered through
client interfaces.

• Verification method(s) – Demonstration for wide range of test data.
• Special Requirements – None.

Portal Software Test Plan

July 25, 2003 JPL Task Order 10650 Page 6 of 9

• Assumptions/Constraints—Context data may be stored anywhere, but
all context data for particular application is stored in the same physical
location (either file system or database).

• Expected results – All data should be stored and recovered without
corruption.

• Actual results (added during the testing phase) – The service behaved
as expected. However, performance is poor when context data is
mapped to trees that are more than one node deep (such as used in
the Fault data tests). Improved design is being tested; the system
interface will not change.

4.2.4 Batch Script Generation Web Service Unit Testing
• Purpose of the test: Verify that the batch script service can correctly

generate C-shell and PBS scripts from user inputs. These scripts
should be executed through the Job Execution service.

• Test Type/Class – Function/operation
• Test inputs –QuakeSim application input files for Disloc, Simplex, and

GeoFEST are used as input to the batch service.
• Verification method(s) – Generated scripts should correctly run from

the command line. PBS scripts should run correctly on PBS systems,
CSH scripts should run most machines.

• Special Requirements – None.
• Assumptions/Constraints—None.
• Expected results – Scripts for selected applications should generate

the expected output files.
• Actual results (added during the testing phase) –The services worked

correctly when tested on grids (CSH), noahsark (PBS), and solar
(PBS).

4.2.5 Application Metadata Web Service Unit Testing
• Purpose of the test: Verify that the Application Metadata Web Services

(AMWS) can be used to describe a wide range of QuakeSim
application code metadata and can be used to launch codes when
coupled with the job execution and script generation services.

• Test Type/Class – Function/operation
• Test inputs – Application codes Disloc, GeoFEST, Simplex, and Virtual

California were tested.
• Verification method(s) – Demonstration of application execution using

generic services.
• Special Requirements – None.
• Assumptions/Constraints—Codes are correctly installed and running

on selected hosts.

Portal Software Test Plan

July 25, 2003 JPL Task Order 10650 Page 7 of 9

• Expected results – QuakeSim codes that were added through the
application interface should be automatically added to the user
interface and should be launched through the Web portal.

• Actual results (added during the testing phase) – Services worked as
expected for all tested QuakeSim applications.

4.2.6 Web Form Portlet Unit Testing
• Purpose of the test: Verify that the WebFormPortlet can load remote

JavaServer Pages (JSP) interfaces to the above Web services. The
portlet should be loadable in Jetspeed, should maintain session states,
should pass HTML Form parameters, should be navigable, and should
maintain SSL connections.

• Test Type/Class – Function/operation
• Test inputs –We tested with “standalone” JSP interfaces for job

submission, file transfer, and job monitoring.
• Verification method(s) –Demonstration.
• Special Requirements – None.
• Assumptions/Constraints—The JSP pages must generate valid HTML

and should not depend on Javascript.
• Expected results – JSP interfaces loaded in portlets should possess

the same functionality as the standalone versions. This was tested
with the range of standalone interfaces described above.

• Actual results (added during the testing phase) – JSP pages worked as
expected, although some incorrect HTML needed to be corrected so
that the portlet could work.

4.2.7 Ant Web Service Orchestration Unit Testing
• Purpose of the test: Several QuakeSim tasks are composed of semi-

independent subtasks that need to be orchestrated on one or more
remote systems. We use this test to verify that Apache Ant may be
launched remotely and used to execute remote tasks consisting of two
or more processes, with dependencies, allowing us to treat these as
single services. We made minor modifications to that Ant source code
to allow it to be invoked as a Web service and wrote task extensions
for generating email, performing file transfers, and interacting with
messaging environments through Java Messaging Systems.

• Test Type/Class – Function/operation
• Test inputs –Sample Ant scripts that can be executed from the

command line. We tested a script that can be used to generate RIVA
output movies with GeoFEST input and a script that can be used to link
mesh generation and boundary condition mesh decoration tools for
GeoFEST.

• Verification method(s) –Demonstration.
• Special Requirements – None.

Portal Software Test Plan

July 25, 2003 JPL Task Order 10650 Page 8 of 9

• Assumptions/Constraints—Apache Ant must be installed on the host
that runs the script.

• Expected results – The Ant service should produce identical
operational results as the script run from the command line (i.e. using
the normal Ant interface).

• Actual results (added during the testing phase) – The services were
successfully tested for both GeoFEST and RIVA. Ant services
produced identical results and operation effects as scripts run from the
command line.

4.2.8 Database Access Web Service Unit Testing
• Purpose of the test: Verify that the system can work with remote data

services and can integrate Web services developed by other groups.
This service is needed to allow other software components to access
the Fault database.

• Test Type/Class – Function/operation
• Test inputs –Clients were developed to interact with the Fault

database. The Fault database developer (Chen, USC) provided
example SQL queries and guidelines.

• Verification method(s) –Demonstration.
• Special Requirements – None.
• Assumptions/Constraints—The Web service client is restricted to

queries and is not allowed to update the database.
• Expected results – Web service clients developed by the IU team

should be able to programmatically access identical information as is
available through the Fault database web user interface (developed by
USC).

• Actual results (added during the testing phase) –Web service clients
accessed data correctly.

4.2.9 Basic System Integration Testing
• Purpose of the test: Verify the system component web services

(described above) are correctly integrated through the portal.
• Test Type/Class – Function/operation
• Test inputs –Tests should be performed with GeoFEST.
• Verification method(s) –Test users.
• Special Requirements – None.
• Assumptions/Constraints—None.
• Expected results – Given instructions, users should be able to

successfully create a GeoFEST input file from an initial geometry, run
GeoFEST with this input file, and receive email notice when generated
visualization MPEG is available for download.

• Actual results (added during the testing phase) – Tests were
completed with the early testing group (Parker, Li, Baker, Simila). We

Portal Software Test Plan

July 25, 2003 JPL Task Order 10650 Page 9 of 9

noticed during testing that application that generates the GeoFEST
input file requires that the layers be added in the correct order. If this
was not done, GeoFEST would run indefinitely (never completing) and
so the workflow engine could not complete its execution. We also later
discovered problems if the user’s problem name includes spaces. In
this case the portal is not able to correctly complete the mesh
generation phase (the mesh generator receives an incorrect input file
as input). Finally, we uncovered problems if the user provides an
incorrectly specified fault (say, one of zero dimensions). The portal
system again fails at the mesh generation phase (the mesh generator
cannot handle a zero dimensioned fault).

5. Test Schedules

The above tests were or are being conducted according to the following
schedule.

• 4.2.1: Started June 1, 2002. Completed July 1, 2002.
• 4.2.2: Started June 1, 2002. Completed July 1, 2002.
• 4.2.3: Started June 1, 2002. Completed July 1, 2002.
• 4.2.4: Started June 1, 2002. Completed July 1, 2002.
• 4.2.5: Started October 1, 2002. Completed November 1, 2002.
• 4.2.6: Started November 1, 2002. Completed December 1, 2002.
• 4.2.7: Started May 12, 2003. Completed May 19, 2003.
• 4.2.8: Started May 26, 2003. Initial tests completed July 1, 2003.

6. Requirements Traceability

See attached requirements traceability matrix.

